Name	Hour				
The Physics of Toys La	b			cm = 1 m	g = 1 kg
Your work must be complete, accur.		at Unitson ev			g - 1 K
.2 pts, due (SHOW YOUR WORK OR I V			rei y aiis	wei piease:	
Play with the following toys and answer the ques			the GUE	:	
Toy #1- SUPER BALLS! Drop a super ball straight do What is the change in potential energy? (How much is Given: mass =22.8g =kg				-	of its rebound.
starting height =1.0 m				Starting PE	=
rebound height=0.8 m					
				Rebound P	E=
				Change in I	PE=
ov #2: CAR DOWN RAMP			(14		
Use conservation of energy to calculate its ve your answer will be a little higher than the ac	-	e bottom of the i	ramp. (V	e are not accoui	nting for frictioi
2. Once you know the velocity (Vx), use it to cale		ar from the edg	e of the t	able the car sho	uld land (Δx) us
horizontal projectile equations.					
3. Once you have calculated Δx, run car down ra	amp, measu	re it and calculat		or for your equat = (acc – expt) / a	
Given: h _i =0.22 h _f =0	∆y of table =	=0.91	% error:	- (acc — expt) / a	
	∆y of table =	·0.91	% error	- (асс — Ехрі) / а	
h _f =0 Calculated: Δx= Mea		0.91 0.75 m	% error:	% error=	
Calculated: $\Delta x = $ Mea (exp over 3: THE DART GUN DO NOT SHOOT IT AT YOUR F traight. Use its change in height (Δy) and how far awa art left the gun and then find it's kinetic energy.	isured ∆x= _ erimental)	0.75 m _ re a dart horizon	itally fron	% error=	ke sure you sho
Calculated: Δx= Mea (exp Goy #3: THE DART GUN DO NOT SHOOT IT AT YOUR For traight. Use its change in height (Δy) and how far awa lart left the gun and then find it's kinetic energy.	isured ∆x= _ erimental)	0.75 m re a dart horizon om the wall (Δx)	atally fron to calcula Δy= fall a little	% error=	ke sure you sho
Calculated: Δx= Mea (exp Goy #3: THE DART GUN DO NOT SHOOT IT AT YOUR F traight. Use its change in height (Δy) and how far awa lart left the gun and then find it's kinetic energy.	isured Δx= _ perimental) RIENDS. Fi y you are fro	0.75 m re a dart horizon om the wall (Δx) <i>The dart will f</i>	atally fron to calcula Δy= fall a little	% error= n 2 m away. Mal ate the speed (v _x 0.12 m	ke sure you sho
Calculated: Δx= Mea (accepted)	isured Δx= _ perimental) RIENDS. Fi y you are fro	O.75 m re a dart horizon om the wall (Δx) — The dart will f shot. That's ye	atally fron to calcula Δy= fall a little	% error= n 2 m away. Mal ate the speed (v _x 0.12 m	ke sure you sho
Calculated: Δx= Mea (accepted) Coy #3: THE DART GUN DO NOT SHOOT IT AT YOUR For traight. Use its change in height (Δy) and how far awa lart left the gun and then find it's kinetic energy. Given: Mass of dart=10 g = kg	isured Δx= _ perimental) RIENDS. Fi y you are fro	O.75 m re a dart horizon om the wall (Δx) The dart will f shot. That's ye	atally fron to calcula Δy= fall a little	% error= n 2 m away. Mal ate the speed (v _x 0.12 m	ke sure you sho
Calculated: Δx= Mea (accepted) Coy #3: THE DART GUN DO NOT SHOOT IT AT YOUR F traight. Use its change in height (Δy) and how far awa lart left the gun and then find it's kinetic energy. Given: Mass of dart=10 g = kg Δx	isured Δx= _ perimental) RIENDS. Fi y you are fro	O.75 m re a dart horizon om the wall (Δx) The dart will f shot. That's ye	atally fron to calcula Δy= fall a little	% error= n 2 m away. Mal ate the speed (v _x 0.12 m	ke sure you sho
Calculated: Δx= Mea (accepted) Toy #3: THE DART GUN DO NOT SHOOT IT AT YOUR F traight. Use its change in height (Δy) and how far awalart left the gun and then find it's kinetic energy. Given: Mass of dart=10 g = kg Δx	isured Δx= _ perimental) RIENDS. Fi y you are fro	O.75 m re a dart horizon om the wall (Δx) The dart will f shot. That's ye	Δy= fall a little our Δy	% error= n 2 m away. Mal ate the speed (v _x 0.12 m	ke sure you sho) with which the

h

Name _	Hour	•

Toy #4 PULL BACK CAR Make or find a 2-meter track on the tile. Pull the car back until it clicks and let it go at the starting line. Record the time and the mass. Knowing Δt and Δx , find the acceleration of your car. Once you know the acceleration, find the force, work and horsepower of the pull-back car. The horsepower should be a little number! It's a little car! 😊

<u>Given</u>: $\Delta x = ___2.0 \text{ m}___$ mass = _125 ___ g = ___ kg $\Delta t = _2.77$ ___ sec

Toy #5: ZOOM-O Place the Zoom-O on the ground and angle it how you like. Shoot the disk a couple of times until it flies straight without hitting the ceiling. Measure the time (Δt) of the disc's flight. Use the Δt to find Viy, Δy , and finally the potential energy of the disc at its maximum height.

mass of disc= ___12__ g = ____ kg Given:

 $\Delta t = 3.16$ sec $\frac{1}{2} \Delta t =$ sec

*Remember, you need to use Δt at the $\frac{1}{2}$ way point to use the $ay = Vfy - Viy / \Delta t$ equation

Viy = _____

Δy = _____

PE = _____

Toy #6: CAR DOWN RAMP PART 2:

□ Pick a car and let it go down the ramp. Measure Δx. Use horz. projectile equations to find Δt and then Vx. Finally use conservation of energy to find hi with your Vx=Vf.

<u>Given</u>: Δy where car leaves table (also hf) = ___0.91___ Δx = __2.5___ m

Calculated hi = _____