\qquad Hour \qquad

The Physics of Toys Lab

\qquad $\mathrm{cm}=1 \mathrm{~m}$, \qquad $\mathrm{g}=1 \mathrm{~kg}$

Your work must be complete, accurate and neat. Units on every answer please!
12 pts, due \qquad (SHOW YOUR WORK OR I WILL TAKE OFF POINTS)
Play with the following toys and answer the questions, making sure to use the GUE!
Toy \#1- SUPER BALLS! © Drop a super ball straight down from a height of your choice. Measure the height of its rebound. What is the change in potential energy? (How much is missing?) Make sure to show all of your work.
\qquad
mass $=\ldots 22.8 _\mathrm{g}=\ldots$
starting height $=\ldots \mathbf{1 . 0} _\mathrm{m}$
rebound height $=\ldots 0.8 _\mathrm{m}$ kg

Starting PE= \qquad

Rebound PE= \qquad

Change in $\mathrm{PE}=$ \qquad

Toy \#2: CAR DOWN RAMP © Pick a car and let it go down the ramp.

1. Use conservation of energy to calculate its velocity at the bottom of the ramp. (We are not accounting for friction, so your answer will be a little higher than the actual.)
2. Once you know the velocity (Vx), use it to calculate how far from the edge of the table the car should land (Δx) using horizontal projectile equations.
3. Once you have calculated Δx, run car down ramp, measure it and calculate a \% error for your equations.
\% error= (acc-expt) / acc x 100\%
Given: $h_{i}=\ldots \quad 0.22 \ldots$
$\mathrm{h}_{\mathrm{f}}=\ldots 0$ \qquad
\qquad Hour \qquad

Toy \#4 PULL BACK CAR Make or find a 2-meter track on the tile. Pull the car back until it clicks and let it go at the starting line. Record the time and the mass. Knowing Δt and Δx, find the acceleration of your car. Once you know the acceleration, find the force, work and horsepower of the pull-back car. The horsepower should be a little number! It's a little car! ©

```
    Given: }\Deltax=___2.0 m__
        mass =_125___g=
```

\qquad

``` kg
        \Deltat=__2.77
```

\qquad

``` sec
```


Toy \#5: ZOOM-O © Place the Zoom-O on the ground and angle it how you like. Shoot the disk a couple of times until it flies straight without hitting the ceiling. Measure the time ($\Delta \mathrm{t}$) of the disc's flight. Use the $\Delta \mathrm{t}$ to find Viy, $\Delta \mathrm{y}$, and finally the potential energy of the disc at its maximum height.

Given: mass of disc=__12__g=__kg
$\Delta t=$ _3.16 \qquad sec $1 / 2 \Delta t=$ \qquad sec
*Remember, you need to use $\Delta \mathrm{t}$ at the $1 / 2$ way point to use the ay $=V f y-V i y / \Delta t$ equation

Toy \#6: CAR DOWN RAMP PART 2: © Pick a car and let it go down the ramp. Measure Δx. Use horz. projectile equations to find Δt and then $V x$. Finally use conservation of energy to find hi with your $V x=V f$.

Given: $\quad \Delta y$ where car leaves table (also hf) $=$ \qquad 0.91 \qquad $\Delta x=\ldots 2.5$ \qquad m

